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AGE DEPENDENT IMPERFECT REPAIR

by

H.W. Block, W.S. Borges and T.H. Savits

ABSTRACT

A stochastic model is developed to describe the operation in time

of the following maintained system setting. A piece of equipment is put

in operation at time 0. Each time it fails, a maintenance action is

taken which, with probability p(t), is a complete repair or, with probab-

ility q(t)- 1- p(t), is a minimal repair, where t is the age of the equip-

ment in use at the failure time. It is assumed that complete repair restores

the equipment to its good as new condition, that minimal repair restores

the equipment to its condition just prior to failure and that both main-

tenance actions take negligible time.

If the equipmentts life distribution F is a co inuous function, the suc-

cessive complete repair times are shown to be a renewal process with inter-

arrival distribution F (t) - I- exp {- (x) F(dx)) for t>0. Preserva-

tion and monotone properties of the model extending the results of

Brown and Proschan (1980) are obtained.

AMS 1970 subject classification: Primary 62N05; Secondary 60K10.

Key Words: Minimal repair, life distributions, renewal processes.
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1. INTRODUCTION

Most of the literature concerning the stochastic behavior of repair-

able systems assumes that repair of a unit provides a functioning one

which is as good as new . However, the technical convenience of this

assumption and its implications were criticized by many authors on the

grounds that repair in many practical instances only restores a uiit to

its functioning condition just prior to failure. See for example Ascher

and Feingold (1979) and references therein.

This discussion stimulated renewed interest in modeling repairable

systems taking into account such "minimal repair actions". New research

efforts in this particular branch of reliability theory include the

works of Blumenthal et al (1976), Brown and Proschan (1980) and 'Balaban

and Singpurwalla (1981) among others.

-The failure process studied in this paper models the following main-

tained system setting. A piece of equipment is put in operation at time

t=0. Each time it fails, a maintenance action is taken which, with-probab-

ility p(t), is a complete repair or, with probability q(t)- I- p(t) , is

a minimal repair, where t is the age at failure of the equipment under

maintenance.

Since availability results are not pursued in this paper, only operating

time will be recorded. This is equivalent to assuming that maintenance is

executed in negligible time. It is also assumed that complete repairs

restore failed items to their good as new condition in such a way that 7

the times between successive complete repairs are independent and identically

distributed. t i t -.I
'.'~llity Codes

rIL~ j , ci*

IA!
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The formal development of the model is given in an appendix where

the basic facts are established. In Section 2 we show that some aging

properties of the equipment's life distribution are inherited by the distri-

bution of the time between successive complete repairs under suitable

monotonicity of the function p. A counterexample is also given to the

conjecture of Brown and Proschan (1980) that the NBUE aging property is

also Inherited when the function p is constant.

In Section 3 some inequalities and further properties of the model

are developed which, as in Section 2, extend results obtained by Brown and

Proschan (1980).

2. PRESERVATION OF AGING PATTERNS

To develop our first results, we start with a brief informal description

of the model; a rigorous development is given in the appendix. We consider

the maintained system setting in which a piece of equipment is put in oper-

ation at time zero and every time a failure occurs it is repaired. If

t is the equipment's age at failure, with probability p(t) it is restored

to its good as new condition (complete repair) and with probability l- p(t)

it is restored to its condition just prior to failure (minimal repait). We

will assume throughout that the good as new condition of our equipment is

.4 described by a survival distribution P which is a continuous function and

such that F(t) >0 for all t>0. We also recall the following two facts:

(i) Lf a piece of equipment with survival distribution F(x) fails at age

t >0 and undergoes minimal repair, the functioning equipment obtained

has survival distribution F(xlt) - F (t) F(x+t);
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(ii) repairs take negligible time.

If only minimal repair actions are taken, the failure process is well

known to be a point process {Sn; n>l) on R+, whose corresponding counting

process {N(t); t 0} is a nonhomogeneous Poisson process with mean func-

tion M(t) - E N(t) -log F(t) for t > 0. Letting p: R+- [0,1 be measurable

and setting q-l-p, we now consider a sequence (Z ; n> 1} of (conditionally)

independent Bernoulli trials such that P{Z n - 1 = p(Sn_1 ) , for n> 1, with

So = 0. As long as failures are observed, minimal repairs are successively

performed; however, at the time the first success is observed, a complete

repair is executed and we begin afresh since we have the equipment restored

to its good as new condition. This means that our general failure pro-

cess regenerates every time a complete repair is made, so that successive

complete repair times form a (possibly delayed) renewal process. Assuming

that we start out with new equipment, we have indeed a standard renewal

process and in this section we will examine preservation properties of

its interarrival distribution.

Let Y denote the time until the first perfect repair starting

with a new item. The relevant results about Y, as derived in the appen-

dix, are restated for convenience in the following theorem.

(2.1) Theorem. Y is finite with probability one if and only if

:1 (Y)-I(y)F(dy) - +o.

In this case we have

N(t) t

(2.2) P{Y> t1 - EE 1 q(Si)] exp p(y)Fly)F(dy) for t>0,
i-l

NMr)
with the convention that H q(Si) H 1 on {N(t) - 0}. Also

i-l
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n
(2.3) EY- g(O) + Elg(Sn) n q(S d]

00n-i Ji

where g(t) -o J(xlt) dx for t>O.

Proof. Since the first two assertions are proved in the appendix, we

proceed to validate equality (2.3)..

p n
E Y -JPtY> t) dt - J[ RI q(S ); N(t) > 13 dt

00 r n
-JP{N(t) - 01dt + JEEtH (S1) N(t) - n] dt

n
P{S > t)dt + [LI1 q(S) J <SnlIdt

. O lnu m1fO i -tS+

00 n
P 0 (t) dt+n~ I Ci-l(i ) foI[saps n+l) (t) dt]

00 n
=g(O) + I EE(S nl- S n) Ti q (S1

Butni + n

n n
EC(S -~lS ) II q (S i)P.EEr q(S ) EES Ul SV.. 1

and since 
0

ESn - s I Si,...'S n FP(xIS) dx - g(Sn)

4
A1 we obtain

n
E EY -g(O) + E~g(S n HI q(S )J

n-i i'i
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(2.4) Remarks.

() We shall henceforth assume that Jop(y)F-l(y)F(dy) -+.

(ii) For convenience we shall sometimes denote the distribution

function of Y by F .

(iii) If F has a failure rate function r, then F has failure rate

function given by r p(t)- p(t) r(t) for t>O.
n

(iv) We will use the convention that H (.)- 1 for n=0
i-i

throughout the paper.

///

We now derive the preservation results.

(2.5) Theorem. If p is increasing (decreasing), then F is IFR, IFRA,
p

NBU or DMRL (DFR, DFRA, NWU or IMRL) whenever F is.
t

Proof. Let R(t) p(y)F(y)F(dy) be the hazard function of Fp, and0
assume that p is increasing. To show that F is IFR whenever F is, we

p

need only show that R is convex. Now if p(t)- I (t) or p(t)- I Wa)(t)

and R is the hazard function of F, then

0 if O t< a,
R(t)-R(a) if a<t

which is easily seen to be convex in t >O. Since any nonnegative increasing

function p can be obtained as the pointwise limit of nonnegative linear

combinations of such indicator functions, it follows that R is convex in
p

A+ for any increasing nonnegative function p.

The same technique is used to prove the IFRA and NBU cases when p is

increasing, by verifying star-shapedness and super-additivity of R , re-

spectively.
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We now assume that F is DMRL. By definition, g(t)- (xlt) dx is

decreasinA in t>0, and to show that F is DMRL we need only show that
rao P

gpt) OFP(x1t) dx is also decreasing in t>O. If we observe that

t+x

p (xtt) - exp{- f p(y)F-(y)F(dy)}
t

rx1

M exp(- j p(y+t)F- (y t)F(dylt) for x>0,

we see that the conditional survival distribution FP (xt) is the same as

the survival distribution of a random variable Y' obtained in the same

fashion as Y but replacing p(y) by p'(y)-p(y+t) and F(y) by F'(y)-F(ylt).

Thus, if we denote the corresponding point process of minimal repair times

by {S'; n>lV and the corresponding counting process by {N'(u); u>}, we
n

deduce from (2.3) that

n
g(t-EY'= g'(O) +I ECgf(S') 11 q'(S')] for t>O,

n-1 n 1 1

where

0 00
g' (s) - F'(xls) dx- j(x Is+t) dx - g (s+t) for s>Q0.

So,

00 n

g9(t)- g(t) + I Eg(S +t) 11 q(S'+t)] for t>0.
nel i-i

Since it can be shown that the joint distribution of (S .... S') is

the same as that of (SN(t)+l-t.. ,SN(t)+n-t) (see (2.6)), it follows

that

0n
gp(t)-g(t) + . E[g(SN(t) ) R q(SN(t)+i)J for t>O.

n-i i-
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Because N(t) increases deterministically with t and g and q are decreasing,

it follows that g (t) is decreasing in t>0 and the proof is complete.

The dual results for decreasing p are handled similarly.

///

(2.6) Remarks.

(i) Note that S is the time of the J'th jump after t of the
N(t)+j

process {N(u); u>0}.

(ii) The joint distribution of (Sf,...,S n ) is the same as the joint

distribution of (SN(t)+l-t .... ,SN(t)+n-t). It is sufficient to

show this only in the case n-2. Letting v> u> 0, we have

P{SN(t)+l t> u, SN(t)+2- t >v

00

. P{S >u+t, S+2 S > v+t, N(t) - j
J=0

P [P{N (u+t) <_J, N (v+t) <J+l, N (t) - J I
J.0

Z P{N(t) - j, N(t+u) - N(t) -0, N(t+v) - N(t+u) <l}
j=0

P{N(t+u)-N(t)-0, N(t+v)-N(t+u) <1} 7 P{N(t)- j}
J-0

P{fN' (u) -0, N' v) -N' (u) <iV

- s1 > u,
/1/

We lastly consider the NBUE case when p is increasing. It was conjectured in

Brown and Proschan (1980) that the preservation result would also be valid

for their model (p constant). We show that this is false through the

following counterexample.

L___
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(2.7) Counterexample:

Consider the following continuous survival distribution

1 O<x<15

linear 15 < x< z

F(x) = 2xlO 4  z<x<25

linear 25 <x < 35

0 35<x

where z is chosen such that (0.5) (1-2x0- ) (z-15)- 5x 10

Simple calculations show that this distribution is NBUE but not NBU.

However, for p - 0.5, F is not NBUE.P
//

?. INEQUALITIES

Let us define
00

foP-J (x)dx

and recall from (2.3) that

00 n
(3.1) IA(p)-g(O)+Z E[g(S) nI q(Si)].

n-l i-i

(3.2) Theorem.

(i) Let F be NBUE. Then
t' x

V (P) <U(I) exp{- 0p(y)F-(y)F(dy)} F-l(x)F(dx)"

(ii) Let pl(t)< p2 (t) for all t> 0, and assume that F is NBUE. Then1 - 2-- P2

P(p) <pp2 o2(x) exp{- oPl(yIF-1(y)F(dy)1VFl(x)F(dxl.

In particular, if p1 and p2 are proportional, then

pM(t) W(p 1)e p2(t) Ua(p2 ) for all t>0.
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Proof.

(i) Since g(t) <g(0) - p(l) it follows from (3.1) that

00 n(3.3) (p) < (1) C 1+ 7 E[ n q(S i ] .
n-i i1l

Now as developed in the appendix,

E-fl q1 )J(--S

for n> 1, and hence

n j rX
(3.4) Z q(s i Jqx)exp{j q(y)-l(y)F(dy)}F(dx)

n-l iffl 0 0
00 x

f exp{- p(y (y F 1 F (d)}V 1(x)F (d) -10 0o

The result now follows from (3.3) and (3.4).

(ii) It will now be convenient to denote the expected value of Y by

.(p;F) instead of u(p) to stress also its dependence on the distribution

F. Since

{ p(y)PFl(y)F(dy) - 1 (y)F(dy) for x>0,

we can write (p;F) - p(l;F ), and similarly one can show that if
p

Pl(t)<P2(t) for all t>0, then p(pl;F) = u(pl/P 2;F). Hence, if F is

NBUE, it follows from (i) that
p = (pl;F) ;Fp

I xp l(y) -I

< i (l;Fp) exp{- (yI Y )F (dy)}F- (x)F (dx)
P2 -0  0 P2(y

)  P2 P2  P2  P2

- '(p2) (x) exp{- P(y)F (y)F(dy)}F-'(x)F(dx).
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This proves (ii), and the last assertion is a direct consequence of the

inequality.

I,!

(3.5) Remark. If v* denotes the number of failures occurring up to and

n
including time Y, we have P{v*-I>n}=E[11 q(S1 )], for n>l, and in (3.4)

i-l
we have shown that

X

EV* f exp{- J p(y)F- 1(y)F(dy)}F (x)F(dx).

We now consider the entire failure process associated with p start-

ing with new equipment having life distribution F. For each t> 0, define

the following quantities: A (t) is the age of the equipment in use atp

time t (i.e., the time from the last perfect repair until t); Z (t) is
p

the waiting time from t to the next perfect or imperfect repair; and

Z *(t) is the waiting time from t to the next perfect repair. It is clear
p

that

(3.6) P(Z (t) >x} = F(xly) P{A (t) E dyl for x> 0,

and since successive complete repair times form a standard renewal process,

we have the following theorem.

(3.7) Theorem. Let F be DFR and p be decreasing. Then A (t), Z (t) and
p p

Z (t) are stochastically increasing in t. Furthermore the standard renewal
p

process of complete repair times has a version of its renewal density, m p

which is decreasing on R+

Proof. Since F is also DFR, the results follow immediately from Theorem
p

3 of Brown (1980) and equality (3.6).

f//

i, ,.-
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We also recall from standard renewal theory that

.41 (3.8) lim P(A p(t) E dy} - -l(p)F p(y) dy,

where the above limit is in distribution. The following result is readily

verified.

(3.9) Theorem. Let F be IFR (DFR), and let Z have the asymptotic distrl-P

bution of Z (t) as t-. If p1(t)<p 2(t) for all t> 0, we havep_

st st
Z < (>) Z •

Pl- P2

Furthermore, if F is absolutely continuous with failure rate function r

and h denotes the failure rate function of Z , we have

h (t)> (<) h (t) for all t>0.Pl P2 -
x

Proof. First notice that F (x)/F p(x)- exp{- J[OP2(Y)-pI(Yy)F-I(y)F(dy)}

is monotone decreasing in x. It follows from this fact that if y is a

nonnegative function for which j y(y)Fp (y)dy < -, then the densities

yPi(y) = ci Y(y)F pi(y) for y>0 and i 1,2, satisfy the relation

(3.10) (y) dy 2 (y) dy for all t> 0.

Taking y(y)= 1 for all y>0, it follows from (3.6), (3.8) and (3.10) that

r

SP{Z >x} JF(xIY)YPI(y)dy

< [(xly)y (y)dyP 2 >x} for x>0,

since F(xly) is decreasing in y. This proves the first assertion.



13

If F is also absolutely continuous with failure rate function r, and

y(y;x)- P(xly), then the failure rate function of Z , i- 1,2, is given by

f0r(x+)(xiy) pi)FPi (y)dy

h PiW J P(Xly)u-F1(pi pP (y)dy

mJor(x+y)yp(y;x)dy for x> 0.

Here y Pi(y;X)=F(xly)p P (Y)/JoF(xI:)F P (z)dz and is obtained from y(y;x)

in the same fashion as 'y (y) is obtained from y(y). The second asser-
Pi

tion now follows from (3.10) and the monotonicity of r.

The dual results follow similarly.

(3.11) Note. In Theorem 3.9 notice that

P{z >x}z f(x+iy)u -1cp)F (y)dyp or p

f fF(zlx+y)Y (y;x)dy

which decreases in x for each fixed z. Hence, Z is also IFR.
p

From Theorem 3.9 it follows that

E Z <E Z

if p1 C(t)<P 2(t) for all t>0, and F is IFR. This conclusion holds however

under weaker conditions on F.



14

(3.12) Proposition. Let Z pbe as in Theorem 3.9. If p 1(t)< P2( for

all t>O0 and F is DMRL (IMRL), then

Proof. If we let y (y) - U(P)F (y) for y>O0, then
p p

EZ J 0 0 P(xlIy) yp(y) dy dx

f'J yp,(y) [Jf (xIy)dxldy

f Y y(y) g(y) dy

where g is as in Theorem 2.1. Since

C~tY P(y)dy itYP(y)dy for all t>O0

and g is decreasing, the result follows.

The dual result follows similarly.
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4. APPENDIX

In this appendix we formally construct the model for the maintained

system setting described in Section 2. A similar model was discussed

in Savits (1976) in the context of an age dependent branching process.

Since a complete repair at any failure point restores the equipment

to its good as new condition and regenerates the failure process,

it suffices to model the failure process up to its first regeneration

point. This will be done through a sequence {(S n,Z n);n> l1 of random

variables, where S > 0 denotes the time of the n-th repair and Z -0n-- n

or 1 indicates aminimalora complete repair at time S n_(S 0 0, Z1 -O),

respectively. We only consider this process up to the random time

SV_1 , where v inf {n> 1: Zn  }. According to the Ionescu-Tulcea

Theorem, c.f. Neveu (1965, p. 162), we need only specify the n-th step

transition probability functions and the initial distribution.

Let F be a life distribution function such that F(0) i0. In order

to avoid technical difficulties we assume that F is a continuous function.

Although it is not necessary, we shall also assume for convenience that

F(t) < 1 for all t> 0. Let p:R+ -0,1 be measurable and set q(t)- 1-p(t)

for t>0.

The nth-step transition probability function is given by

(A.I) PIS I > t,Zn+I  z iZ,...',n}-p(S q() F(S v t)/F(S

n1 n+1 'n n n

for n 1,2,... and the initial distribution is

(A.2) P{S1 > t,Zl -z} - F(t) 6{0}(z).

From (A.1) and (A.2), it is easy to check by induction that
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(A.3) Ef(SZ S ... ,Z) -

1 --1 P1 o
I (s 1 )j F (8 2) ... ( -Zl, ...,z n O -0 os I  Sn 2

roo n zi  1-Zi
j - iZ2 P(Si I) 'q(si_ I)  if(SlO,s2,z2, ...,"SnZn) F(dSn )--.F(ds I

for any nonnegative measurable function f(slzl,... ,s , z n ) and n>2.

Now, let {N(t); t> 01 be the counting process corresponding to

{Sn : n> 1}, which is defined by N(t) - I I ot](Sn).
n-i

(A.4) Theorem. {N(t), t> O} is a nonhomogeneous Poisson process with

mean function M(t) -E N(t) -- log F(t).

Proof. From Cinlar (1975, p. 96) it suffices to show that M(SI),M(S2)-M(S1),

.... M(S n+)-M(S n),... is a sequence of independent identically exponen-

tially distributed random variables with paraneter X - 1. If n>_2,tI>0,...,tn+l>O

and we let

f(slZl,...,Z) -

P{M(SI1) > tIM(S 2)-M(SI1) > t 2,...M(S n+1I)-M(S n ) > t n+iISl-Sl,MZl,...,S n-Sn, Zn=Z n,

*straightforward calculations give
-n 4

n+3. , . -t I  -st 2 Z j
P{SI>G(e )IS2>G(e F(l)...,Isn >G(e -tn~l F Sn) ftSlZlnZl,...,VSn"SZn=zn }

1 2,1 >G1 nln nn n n

where G denotes the left continuous inverse of F. From (A.1) we have
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0 if si<_G(e F(si-)) for some il,..,n(soO),
Sf(sl'Zl* 

...'Sn'Z n)

s(G(e tz. n n+l  )vs)) -t n+

Se otherwise,
F(s n )

sinc G~-tn FSn) > G((n)>_s

since G(e F(s ))> G(F(s n > s Finally, from (A.3)

P(M(S ) > tI, M(S 2)-M(SI )>t2,. 2 . ,M(S n+)-M(Sn )>t }-Ef(SI,ZI,... ,S n,Z )n+l

- e } -l 1 )I>G(eI)) J (s2)I{s2>G(e (l2 xfo
I - 1 (Sn l)I{sn >G(e (sn 2)) ) {sn>G(e (S n-l ))F(dSn...F(ds)

Sn-2 n-1

n+l
exp { - I tI}

i-I1

as desired.

///

As observed, we are interested in the behavior of the sequence

{(S ,Z ) n n>l} only up to time Y - S -i' where v-inf{n>1; Z; 1} with

inf4-+ . We note that v>2 since ZI 0; further results are contained in

the following theorem.

(A.5) Theorem.
n

(a) P{v-n+llSI,ZI ...,Snz n) 
p (S

n) t I{ZiO}.
N(t)

(b) P{Y>t;v < +- E III q(S ).
i-l

(c) P{v,+v}) 1 if and only if Jp(y)F-l(y)F(dy) =+*.

(d) If P{v<+-}- 1, then
t

P{Y>t} exp(- Jp(y)f'(y)F(dy)}.P{Y~} ex{- o
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Proof.

(a) P{vun+11s,,Z1 ,...,s nZ nP{z I ...-Z noz ,Z+ iSilzip...s n'z n

n
-i i {ziuO}P{z n 1 uisiS 1 Z,...,, n'z
i-i

n
p(S ) Rl I(Z a.J.

(b) P{Y >t v < +-} p' P{y > v -n+1}

- P{S > t, v -n+l}
n1 i

I EEP{v-n+1IS V ,j..S nZn };S > t]

n1 1n

-~E[p(S n) HII q(S ) S n> t]
n-1 i2 T

On the other hand,

N(t) 0
E[ nI q(S ) I EE HI q(S ); N(t)- n]

n-i im

m I E[IR q(S);S < t< S I
ninO imi i ni ti+

- E[ 11 q(S) i ~ >t E[ 11 q(S );s > t]
ninO i-i n0O i-1i

n
~E[p(S n ) n1 q(S 1 ); S n~l> t]

n-O i-1

- EEp(S) n q(S s) St]
n-1l 1-2n
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(c) and (d)

PfY> t, v_ n+l) P{Sn > t, ZlW 2 m ... = m, Z +11)

--1 n-I
(sI) *f**~ I F s ~nj P ~ n (s i)Ifs n>t)F(ds n1 ... F(ds 1

01 n-l 8 m

ft7F(ds 1)Ps) if n-1,

sc Sn nl r s2

if n>2,

which follows by integrating F(ds n ) and then reversing the order of inte-

gration.

Hence, for n>l1 and t>O0, we have

P{Y >t, v - n+11 - fP(x) (1) xjq(y)Fl(y)F(dy)3nilF(dx),

so that

P{Y >t; V < -} 7 P{Y >t, vn+l}
n1I

00 x

- p(x) exp{j q(y)F l(y)F(dy)}F(dx).

But since

exp{fq(y)PFl(y)F(dy)) exp{JLJ.p~y)]F 1l(y)F(dy)}

(x) exp{- j 1yV(y)F(dy))}
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we have

4 Lx

P{Y> t; v<+ -ft p(x) exp{- F p(y)-'(y)F(dy)}F-l(x)F(dx)

t 0

- exp{- j'PCY)F-(y)F(dy)}-exp{- p(y)Fl-(y)F(dy) }

00
Consequently for t-O,

P(v<+-I - I-expf- J p(y)F (y)F(dy)1.

Now (c) and (d) follow immediately from the last two equalities.

///

(A.6) Remark. In the above calculations we are making use of the fact

that if H is a continuous distribution function on (-=, -co) and 0 is any

function which is absolutely continuous with respect to Lebesgue measure

on the range of H, then for all a,b

b

0'(H~x)H~d - 4(H(b)) -(~a)Ja
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